
PyDecay/GraphPhys: A Software Framework for Reducing High-Energy Physics Analysis Preparation Time
Jesse Dunietz (doonitz@mit.edu)
MIT, BaBar Collaboration (SLAC)

Choose decay of interest

Check whether others have
investigated it

Check possibility/probability
of occurrence

Obtain predictions from
computer simulation

Write simulation
configuration file

Verify simulation
configuration file

Reconstruct occurrences
from detector data

Write reconstruction
configuration script

Verify reconstruction
configuration script

Difficulties of HEP Analysis

Typically, an analyst chooses a particular decay sequence to

study, obtains theoretical predictions about this decay from

computer simulations, then configures the “reconstruction”

software to search the detector data for instances of the decay.

Some of the subtasks in this workflow and their problems:

Key:

= Using existing software tools for task is difficult

= No software tools exist for task

Each subtask should take at most several hours. However,

there are currently no tools at all for those in red. The tasks in

yellow are doable but difficult, because:

• there is no easily searchable centralized database of

previously studied decays

• the simulation and reconstruction configuration files have

unwieldy, unintuitive, and unrelated formats

Because of these issues, pre-analysis tasks can take up to two

months.

Purpose

Experiments such as BaBar provide high-energy physics (HEP)

analysts with the data they need to make new fundamental

physics discoveries. Currently, an analyst’s pre-analysis work

involves a tedious simulation and data reduction phase.

The purpose of PyDecay is to reduce this pre-analysis period

from months to days. It is a software framework that provides

various computer representations of particle decays, making it

almost trivial to build tools to automate pre-analysis tasks.

The BaBar Experiment at SLAC

The BaBar experiment was designed to seek explanations for

the asymmetry in the universe’s matter/antimatter balance.

The basic structure of the experiment is as follows:

D+
 K* π+

K*
 K+ π-

…

The SLAC linear accelerator is used to
create electron and positron beams,

which are diverted to “PEP-II” storage
rings. Eventually, the beams are

collided within the BaBar detector,
forming high-mass particles.

Some high-mass particles decay into
lower-mass particles, whose presence

and properties are picked up by
detectors.

Analysts run software to reconstruct the
chains of particle decays from the

detector data.

The task of experimental analysts is to configure and run the

reconstruction software, to compare the results with theoretical

predictions, and to draw conclusions from the comparison.

GraphPhys Decay Description Language & Parser

PyDecay As a Solution:
Modules for Manipulating Decay Representations

PyDecay was designed to provide a comprehensive solution to

these problems. It provides a suite of representations for particle

decay chains and the means to convert between them. Each of

these decay representations is designed to target some subset of

the problematic tasks mentioned above.

PyDecay is not itself a software tool; it is a framework for building

software tools. The framework was designed to be as modular as

possible: new representations, database implementations, and so on

can easily be added in the process of building a new tool.

All modules were implemented in Python.

Visualization

Database
Module

Converter
Module

decay [simulator=VSS];

ChargeConj=True;

"D+"[mev=2384.01];

"D+" -> {"pi" "K*0"};

GraphPhys is a language for describing particle decay chains

and their attributes. It is designed for:

• Clarity for reading/writing by humans

• Ease of computer parsing

• Flexibility

GraphPhys simplifies the pre-analysis workflow by:

• Providing a common input format for various configuration

files, and for use in other tools

• Making configuration files easier to write

• Making existing configuration files easier to read

The language is described by an abstract grammar. PyDecay

includes a GraphPhys parser and uses GraphPhys as its primary

input mechanism, but the language is independent

of PyDecay in the sense that any software package could

implement a parser.

PyDecay includes a module for producing several kinds of decay

visualizations. The built-in visualization types are:

• GraphViz Dot diagrams • Feynman diagram-like images

Visualization simplifies the pre-analysis

workflow by:

• Allowing a visual check on the

correctness of configuration files

• Helping analysts consider decays more

thoroughly by allowing them to think

graphically

The database module exists to store

and provide generic information about particle

and decay types.

The module allows for different database

implementations. The default implementation is a full-

fledged relational database, and also allows storing/

accessing information about previously entered decay descriptions.

ID # Type Product of

242 pi+ Instance #243

243 D+ (None)

… … …

A relational table containing

previous search records

Name Mass Charge Mean Life …

pi+ 139.57 +1 2.6(10-8) …

D+ 1869.6 +1 1.04(10−12) …

… … … … …

A relational table containing

generic particle type information

The database module simplifies the pre-analysis workflow by:

• Providing information on known particle/decay data for tools

that may rely on it

• This allows checking the probabilities of specific decays

• Enabling a centralized, searchable repository for past decay

analysis descriptions

Core Internal Decay Representation

At the core of all PyDecay modules is a tree-

based representation of decay sequences. Each

particle is a node in a decay tree, and its child

nodes are the particles it decays into. Each

particle and each decay can have associated

properties, which are simply name/value pairs.

Each node may have multiple child sets, each

representing a probabilistically possible decay.

A common decay, represented as a

decay tree

D+

K*0

K pi-

pi+
D+
 K* π+

K*
 K+ π – PyDecay’s various representations would be

useless without a way to convert one to another.

The conversion module provides a framework for

converting between representations. It is designed to be

modular, so that new representations may be easily integrated.

D+

K*0

K pi-

pi+

Name Mass Charge Mean Life …

pi+ 139.57 +1 2.6(10-8) …

D+ 1869.6 +1 1.04(10−12) …

… … … … …

decay [simulator=VSS];

ChargeConj=True;

"D+"[mev=2384.01];

"D+" -> {"pi" "K*0"};

Tools Built with PyDecay

My mentor and I have built several command-line tools upon the

PyDecay framework that showcase the framework’s abilities:

• Decay simulator: a minimal proof-of-concept Monte Carlo

(i.e., randomized) decay simulator that uses GraphPhys as

its input format

• Kinematics checker: uses database information to

determine whether a proposed decay violates conservation

laws (no prior software does this)

• Branching fraction calculator: computes the total

probability of occurrence for an entire decay tree, using the

database for probabilities of individual decays (no prior

software does this)

• Configuration generators: take GraphPhys decay

descriptions and output configuration files in the existing

formats for simulation and reconstruction software

• Visualizer: simply outputs a visualization graphic for a given

decay

In creating PyDecay, I have:

• Defined a simple, easy-to-use decay description language

on which decay descriptions can be standardized

• Implemented a framework of representations for decays that

can be used to store, extract, and display decay information

• Demonstrated the usefulness of the framework by using it to

implement tools that make formerly arduous tasks far easier

I believe that this framework, particularly the GraphPhys

language, will prove immensely useful to high-energy physicists

worldwide.

Contributions

A sample GraphPhys file corresponding to

part of the decay shown in the center

Future Potential & Ongoing Efforts

The PyDecay package has great potential for expanded use:

• GraphPhys could become a standardized, universal decay

description language.

• The database component could be the backend for a public

database of the Particle Data Group’s tabulated particle data.

• The simplified analysis tools will simplify analysis in BaBar

and similar projects, e.g., LHC experiments and SuperB.

• The tools can be used for education and outreach.

My mentor and I are engaged in discussions with other groups

about adopting PyDecay and GraphPhys for these purposes.

We are continuing to improve and maintain PyDecay.

The project is free software; the code can be freely

downloaded from the PyDecay Google Code

repository: http://code.google.com/p/pydecay/.

Acknowledgements

Many thanks to my mentor, Matt Bellis (mbellis@stanford.edu),

whose guidance was invaluable throughout the project.

I also thank the following institutions for their support:

http://code.google.com/p/pydecay/

