
PyDecay/GraphPhys: A Unified Language and Storage System

for Particle Decay Process Descriptions

Jesse N. Dunietz

Office of Science, Science Undergraduate Laboratory Internship (SULI)

Massachusetts Institute of Technology

Stanford Linear Accelerator Center

Stanford, CA

August 20, 2010

Prepared in partial fulfillment of the requirements of the Office of Science, Department of

Energy’s Science Undergraduate Laboratory Internship under the direction of Matthew Bellis

with the BaBar team at the SLAC National Accelerator Laboratory.

Participant:

Signature

Research Advisor:

Signature

SLAC-TN-11-005

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

TABLE OF CONTENTS

Abstract ii

Introduction 1

System Implementation 2

Discussion and Conclusions 9

Acknowledgments 11

References 11

i

ABSTRACT

PyDecay/GraphPhys: A Unified Language and Storage System for Particle Decay Process

Descriptions. JESSE N. DUNIETZ (Massachusetts Institute of Technology, Cambridge, MA

02139) MATTHEW BELLIS (BaBar team at the SLAC National Accelerator Laboratory,

Stanford, CA 94025)

To ease the tasks of Monte Carlo (MC) simulation and event reconstruction (i.e. inferring

particle-decay events from experimental data) for long-term BaBar data preservation and

analysis, the following software components have been designed: a language (“GraphPhys”)

for specifying decay processes, common to both simulation and data analysis, allowing ar-

bitrary parameters on particles, decays, and entire processes; an automated visualization

tool to show graphically what decays have been specified; and a searchable database storage

mechanism for decay specifications. Unlike HepML, a proposed XML standard for HEP

metadata, the specification language is designed not for data interchange between computer

systems, but rather for direct manipulation by human beings as well as computers. The com-

ponents are interoperable: the information parsed from files in the specification language can

easily be rendered as an image by the visualization package, and conversion between decay

repesentations was implemented. Several proof-of-concept command-line tools were built

based on this framework. Applications include building easier and more efficient interfaces

to existing analysis tools for current projects (e.g. BaBar/BESII), providing a framework for

analyses in future experimental settings (e.g. LHC/SuperB), and outreach programs that

involve giving students access to BaBar data and analysis tools to give them a hands-on feel

for scientific analysis.

ii

INTRODUCTION

When physicists want to analyze data from a collider experiment such as BaBar, they gen-

erally do so in two steps. First, they must simulate the decay reactions they are looking for

so they know what current theories predict, and second, they must analyze the collider data

so that they can compare actual results with theoretical predictions. For the first step, they

need to specify the decay processes to simulate and the parameters – branching fractions,

angular distributions, etc. – under which these processes should be simulated. For the sec-

ond, they need to specify various parameters describing which events to search for amidst the

petabytes of experimental data, which algorithms to use for reconstructing particle decays

from detector data, which particle attributes to extract from the detector data, etc.

Currently these are specified in custom textfile formats, with the simulation and data-

extraction formats sharing nothing. These configuration file formats are not very user-

friendly, and can be so time-consuming to learn that anyone who wants to write such a

file generally simply copies an old one and modifies it. It is also often difficult to read

out from such a file what decay it is actually analyzing; if that information is directly and

clearly present, it is only in comments. Automated visualization of the decay is certainly

not possible.

This arrangement is not ideal for a number of reasons. First, there is a decent chance

that what an analyst has specified in a configuration file is not actually what he or she

intended, and there is no way short of running the analysis or simulation to determine that.

Additionally, it is difficult to introduce new collaborators to the project, since the learning

curve for using the configuration files is so high. This is particularly problematic given that

the SuperB collider, if it becomes a reality, will want to leverage BaBar’s tools, but the SLAC

researchers currently working with these obscure tools may no longer be available to explain

the system at that point. There is also no easy way to search these files for particular decay

1

processes, and thus no easy way to know that the process one is examining has not been

examined already. In fact, some of the configuration files are not even stored in a central,

publicly available location. This lack of centrality and searchability can lead to duplication

of effort. Finally, some BaBar team members have been advocating releasing some BaBar

data to the public for use in classrooms, so that students can acquire a sense of what it is

like to work with real physics data, and hopefully increase their excitement about and sense

of participation in genuine physics. This of course requires that the tools for analyzing the

BaBar data be intuitive and accessible to people outside the laboratory.

To address these problems, it was determined that a new system for specifying and storing

decay information was necessary. The system would need to allow simple, intuitive input of

decay information, without strange or obscure format features, to eliminate the high learning

curve of the current system; easy visualization of the contents of such a configuration file,

to allow ensuring the correctness of the input; and a searchable long-term storage system

to allow collaborative sharing of and searching for decay descriptions. A system with all of

these capabilities and characteristics was implemented in the course of this project.

SYSTEM IMPLEMENTATION

The entire system was implemented in Python. Each of the functionalities listed above was

implemented in a separate module. All components of the system assume that the physical

processes under study can be characterized as a tree of particles, where the root of the

tree is the initial particle and the children of each particle-node are the decay products of

that particle. This model is somewhat complicated by the probabilistic nature of decays, as

discussed below.

2

Decay Process Internal Representation

A set of Python classes was created to represent physical decay processes and groups of such

processes. In terms of the tree model described above, every node (particle) in the tree has

a type, a list of parameters – arbitrary name-value pairs – and a set of associated decays.

These decays are essentially lists of product particles, along with associated parameters –

again, merely name-value pairs. There is also a class representing a group of unrelated

particles, i.e. a forest of such particle-decay trees, which can also contain general parameters

pertaining to the whole simulation/reconstruction analysis.

The probabilistic nature of decays complicates the tree representation somewhat. For

instance, if a K0 can decay to either two π0 particles or a π+/π− pair, this effectively

means there are two alternative trees for that K0 particle. This is generally represented

as alternative child-node sets for the particle object. For example, D+
→ K∗π,K∗

→ ππ

internally has only one object representing the K particle, with two alternative subtrees.

However, it is sometimes useful, particularly for visualization, to have a single unambiguous

tree with no probabilistic alternatives. For this purpose methods have been implemented to

“flatten” the alternative trees into a set of full decay path trees. Thus, in the above example,

this flattening would produce two trees, as illustrated in Figure 1. A noteworthy feature of

this flattening is that, if the database (see below) contains branching fraction information

for the decays under examination, the product branching fraction – that is, the probability

of the entire flattened decay tree – can be computed in the processes of flattening the tree.

In many cases an analyst would like to specify that a particle should be allowed to

decay “generically” – that is, it should decay according to the standard tables of decays and

associated probabilities. A decay with no products is used to indicate such a generic decay.

These Python objects are the basis for the other components, which all use this object-

based representation of decays. The objects can of course be created directly in Python

code, but it is often easier obtain them from a database or “GraphPhys” representation.

3

GraphPhys Decay Description Language

A decay description language, christened “GraphPhys”, was created to allow specification

of decays with various parameters to be written down in a simple, easily readable form.

GraphPhys is essentially a subset of the Graphviz DOT graph description language. The

abstract grammar for GraphPhys can be found in Figure 2.

Terminals are given here as single-quoted strings. Elements in brackets are optional;

parentheses indicate grouping. Much as in Dot, whitespace is always ignored, and an ID is

one of the following:

• Any string of alphabetic ([a-zA-Z\200-\377]) characters, underscores (‘_’) or digits

([0-9]) (unlike in Dot, an ID may begin with a digit);

• A numeral ([\-]?(.[0-9]+ | [0-9]+(.[0-9]*)?));

• Any double-quoted string ("...") possibly containing escaped quotes (\")

Unlike Dot, GraphPhys does not allow HTML strings as IDs.

In GraphPhys, one particle decaying to another set of particles is represented by the

name of the initial particle and an arrow, followed by a curly-brace-enclosed list of decay

products. Figure 3 demonstrates this syntax with a sample GraphPhys file that describes

the aforementioned D+ decay with some additional parameters. The simulator=JETSET

line is an example of setting a default parameter for all decays; the same can be done for

particles. The fraction parameter, though not demonstrated in this example, is a special

parameter used to indicate decay branching fractions: the simulator could explicitly told

the probabilities for the K∗
→ π+π− and K∗

→ π0π0, although these probabilities could

alternatively be fetched from the database (see below). This is one of the few parameters

whose meaning is fixed by the GraphPhys system. The ChargeConj=True line demonstrates

how global parameters can be configured for the entire set of decays described in the file.

4

Database Structure and Implementation

In addition to the internal Python-object representation, a database representation was

designed and implemented for storing decay specification information in a searchable, scalable

database. The hope is that researchers in a group or students in a school will be able to

create local databases of stored decay specifications so that they can see what others have

looked at. This is in part motivated by a desire to replace the current .DEC and .tcl files,

used for configuring BaBar’s MC simulation and reconstruction software, respectively. These

files tend to be stored by the thousands alongside each other, sometimes under a user’s home

directory rather than in some shared location. Their filenames often reflect their contents,

but they are still far from easy to search.

The Object-Relational Mapper (ORM) component of the Django web application frame-

work [1] was used to define the structure of the database (though this structure can of

course be dumped as generic SQL) and to manipulate it programmatically. This abstraction

layer makes migration between database engines trivial and makes querying the database

far easier.

The database was initially designed only to store the information contained by GraphPhys

files, but it quickly became clear that it would be useful to store generic known particle/decay

information as well. Broadly speaking, then, the database design can be split into two sets

of tables:

1. Particle/Decay Types: The tables for storing the names and properties of known

particles and decays. These tables exist to encapsulate some of the information con-

tained in the publications of the Particle Data Group (PDG), the premier publisher

of particle and decay data, in a computer-readable, searchable format that is also

well-integrated with the other half of the database. The tables in this group are:

• pydecaydb_particlebasetype: Contains the masses, charges, PDG ID numbers,

5

etc. of various types of “base” particle types, i.e. type information excluding

information about charge conjugation.

• pydecaydb_particletype: Contains actual particle types, referencing base types

and including charge-conjugated names. This table and the previous onecan be

automatically populated from the PDG’s CSV file [2] of particle data.

• pydecaydb_decaymode: Identifies standard known decay modes. The table itself

stores only the initial particle type foreign key and the branching fraction of the

decay mode.

• pydecaydb_productsetmembership: Associates particle types with decay modes.

Each particle type/product set association also records a count of how many

particles of that type are present in that product set.

2. Particle/Decay Instances: These tables store information pertaining to specific

particles or decays that users have input using the PyDecay system – perhaps through

GraphPhys, perhaps by direct Python object creation. Every time a user specifies that

there is, for instance, a π+ particle somewhere in his or her decay tree, this can be

thought of as declaring a new π+ instance, and it will be recorded as such if the decay

tree is stored in the database. The tables in this set are:

• pydecaydb_particleinstance: Stores the foreign keys for the type, parent par-

ticle (if any), and instance group (see below) of each particle instance. Because

charged types are stored sign-independently, the entries in this table also indicate

whether the particle is positively or negatively charged.

• pydecaydb_decayinstance: Stores the foreign key for the initial particle of each

decay instance. Products can be inferred by looking for particles whose parent is

the initial particle. The decay mode can be inferred from initial instance type,

product types, and intermediate angular momentum (if specified).

6

• pydecaydb_instancegroup: Provides group ID’s for particles to identify them-

selves with. Each group ID indicates a group of unrelated particles – for example,

a set of unrelated root particles from a single GraphPhys file.

Each of these tables also has an associated table for storing instance parameters as

name-value string pairs.

Various functions for searching for and manipulating entries in the database in an object-

oriented manner have been implemented in Python using the Django system.

While these tables constitute the primary database system in the PyDecay framework, a

need was also recognized for allowing use of the framework without the heavyweight require-

ments of Django and a relational database system. To that end, an abstract interface to the

particle type/decay mode segment of the database was created to allow alternative imple-

mentations for storing/fetching such data. Two alternative implementations are provided

besides the Django implementation: a null implementation that always returns no results

when retrieving particle/decay data, and a system that uses Python dictionaries to specify

particle/decay information. A library-global settings file is used to specify which database

implementation to use.

Visualization/Conversion Tools

A visualization/conversion package was created for converting between various representation

formats. The following representations of a decay tree are interchangeable, i.e. any one of

them can be converted in to any other one (via PyDecay objects, in some cases):

1. GraphPhys – a string of text conforming to the GraphPhys language specification.

2. PyDecay objects – Python objects from the PyDecay library discussed above.

3. Database instances – rows from the second class of database tables described above,

represented in code by Django Python objects.

7

4. Database types – rows from the first class of database tables described above; con-

verting to this representation is primarily useful for inserting new decays into the decay

modes table.

In addition, any of the above representations can be converted via PyDecay objects into any

of the following alternative representations, though the reverse conversion is not possible:

1. GraphViz diagram – a visualization of decay trees illustrating decays as arrows

between boxes that contain particle names and parameters and decay parameters. The

visualization is generated by the GraphViz diagram-layout system [3] via the Pydot

Python package [4].

2. PyFeyn diagram – a visualization of decay trees as “cartoon” decay diagrams, ren-

dered using the PyFeyn Feynman diagram-drawing package [5]. Unlike the GraphViz

visualizer, this visualizer does the layout internally, since PyFeyn does not do it auto-

matically.

3. tcl file – a .tcl file in the same format as those used to configure BtaTupleMaker,

the BaBar reconstruction software. This converter is a proof-of-concept to show that

the PyDecay libraries can be used to create tools as powerful as the current ones but

which can be used much more easily.

The conversion framework was designed to be sufficiently generic that conversion to new

formats can easily be integrated. Conversion is performed by “converter” objects which all

support the same conversion API. This would even allow building a system in which the

precise type to be converted to was specified in a config file via the qualified name of the

converter class to use.

8

DISCUSSION AND CONCLUSIONS

PyDecay is a set of libraries for use in the creation of analysis tools. While it does not itself

perform the analysis, the functionality it provides should make the creation of such tools

almost trivial, thus accomplishing the major goals of the project.

As a proof of concept, a minimal Monte Carlo decay simulator was modified to use Graph-

Phys files as its input format. A kinematics checker was also implemented for checking that a

decay specified in the GraphPhys format is kinematically possible. This latter functionality

is particularly useful given that currently this type of check is typically done painstakingly

by hand. The checker works with very minimal GraphPhys files, since the masses of the

particle types can be loaded from the database.

The niche filled by PyDecay is, as far as we know, unique. There have been attempts

to create a common XML dialect for HEP decay information, called HepML, which appears

to be a similar concept to GraphPhys. This specification, however, appears to be for data

interchange between software packages [6], e.g. for passing configuration parameters around

between two Monte Carlo simulators in the same toolchain or in different projects. As an in-

terchange format, HepML’s requirements are fairly different from GraphPhys’s. GraphPhys

is meant to be an input format: GraphPhys files are human-editable textfiles which easily

yield their meaning to another human on inspection, as well as being computer-readable.

As anyone who as written XML by hand knows, XML files are neither easily writable nor

easily readable by humans. In fact, the PyDecay converter framework could easily be used

to write a converter between PyDecay objects and HepML strings.

As far as the database component, we know of no other HEP project that has created

a similar searchable database of researchers’ past decay specifications, nor even one that

allows searching for known general particle/decay data. There are existing databases of such

general data, most notably the PDG; unfortunately, the PDG does not make this database

9

available for public access. The Durham HepData project [7] allows searching for decay

process information by inputting a text string describing the decay, but the information

returned cannot be manipulated programmatically; the system simply returns a list of links

to publications containing relevant information. PyDecay’s database module is much more

flexible, allowing queries such as “What are all the decay modes with any initial state and a

final state of exactly 3 pions?”

The PyDecay suite has been demonstrated to several groups of potential users, generally

getting a positive response. All the potential users who examined it have indicated that

they would likely find it useful, and some indicated an interest even in just the minimal

proof-of-concept tools that have been implemented so far.

Some work still remains to be done, however. Most notably, it is not currently possible

to represent a certain type of decay specification that is sometimes useful to analysts. The

problem occurs when analysts would like to specify a decay such as “X decays to Y, Z, and

some other unspecified particles which are not of interest.” Currently there is no way in any

of the decay tree representations to capture the idea of “other unspecified particles.” The

feedback we have received indicates that this is something that analysts do often want to

specify, making this functionality gap a potentially serious deficiency. On a similar note,

the PDG lists several “inclusive modes” – modes including unspecified particles as described

above. Thus, such underspecified decays may be present not just in an analysis but even in

PDG standard data. These cannot currently be represented in the database, though some

preliminary work has been done on figuring out how they could be. A few minor issues have

also been identified with the GraphPhys syntax.

Despite these shortcomings, we feel that the functionality provided by PyDecay is suf-

ficiently compelling that the system will be adopted in both experimental and outreach

settings. We have made the tools and code publicly available, thus enabling adoption and

improvement in any setting in which the libraries might prove useful.

10

ACKNOWLEDGMENTS

I would like to thank Matt Bellis, my mentor, for all his passionate support, guidance, and

teaching. He gave the project direction and enabled it to go as far as it did. I would

also like to thank Steve Rock, the SLAC SULI Program Director, and the other SLAC

SULI administrators who made the program run smoothly. Additional thanks to the SLAC

National Accelerator Laboratory, the Office of Science, and the Department of Energy for

running the SULI program. Special thanks to all those BaBarians who listened to our ideas,

tested out the software, and gave us feedback.

REFERENCES

[1] (2010, May) Django: The Web framework for perfectionists with deadlines. [Online].

Available: http://www.djangoproject.com/

[2] (2008) Masses, Widths, Quantum Numbers (IGJPC) and MC ID Numbers from 2008

Edition of RPP. [Online]. Available: http://pdg.lbl.gov/2010/mcdata/mass width 2008.

csv

[3] (2008, Apr.) Graphviz – Graph Visualization Software. [Online]. Available: http:

//graphviz.org/

[4] (2007, Oct.) Pydot. [Online]. Available: http://dkbza.org/pydot.html

[5] (2007, Sept.) PyFeyn. HepForge. [Online]. Available: http://projects.hepforge.org/

pyfeyn/

[6] (2008, Mar.) HepML. HepForge. [Online]. Available: http://projects.hepforge.org/

hepml/

11

[7] Durham Reaction Database. The Durham HepData Project. [Online]. Available:

http://hepdata.cedar.ac.uk/reaction

[8] (2008, Aug.) The DOT Language. [Online]. Available: http://www.graphviz.org/doc/

info/lang.html

12

FIGURES

D +

p

y 0

x 0

z 4 . 0

Decay Parameters :
simulator JETSET

K*(892)0
l ineshape BW

Decay Parameters :
angulardis t VSS

simulator JETSET

p i +

K + pi-

D +

p

y 0

x 0

z 4 . 0

Decay Parameters :
simulator JETSET

K*(892)0
l ineshape BW

Decay Parameters :
angulardis t VSS

simulator JETSET

p i +

K- p i +

Figure 1: An example of how one decay tree with alternatives can be split into several
distinct trees, (produced using the PyDecay Dot visualization package).

13

stmt_list : [stmt ’;’ [stmt_list]]

stmt : node_stmt

| edge_stmt

| default_stmt

| param_stmt

default_stmt : (’particle’ | ’decay’) param_list # Like ’node’ and ’edge’ in Dot

param_list : ’[’ [param_sequence] ’]’

param_sequence : ID [’=’ param_val] [’,’] [param_sequence]

param_val : ID | param_list | float_number

edge_stmt : ID edgeRHS [param_list]

edgeRHS : edgeop node_set

node_stmt : ID [param_list]

node_set : ’{’ id_list ’}’

id_list : ID [id_list]

param_stmt : ID ’=’ param_val

Figure 2: The GraphPhys abstraction grammar. This is a simplified and slightly modified
version of the standard DOT grammar[8].

decay [simulator=JETSET];

ChargeConj=True;

"D+" [p=[x=0, y=0, z=4.0]];

PiPlus1 [type="pi+"];

PiPlus2 [type="pi+"];

"K*(892)0" [lineshape=BW];

"D+" -> {"K*(892)0" PiPlus1};

"K*(892)0" -> {"K+" "pi-"} [angulardist=VSS];

"K*(892)0" -> {"K-" PiPlus2} [angulardist=VSS];

Figure 3: A sample GraphPhys file describing two possible decay paths for a D+, with
some additional parameters for simulation.

14

