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Task definition: connective discovery + 
argument identification

because

Connective discovery

Argument identification
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“Constructions on top”
borrows two key insights of CxG.

1. Words, multi-word expressions, and grammar
are all on equal footing
as “learned pairings of form and function.”

2. Constructions pair patterns of surface forms
directly with meanings.
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Previous projects have struggled
to annotate real-world causality.

<e1>flu</e1> <e2>virus</e2>

Cause-Effect(e2, e1) = "true"

allocated equip

BEFORE-PRECONDITIONS



Existing shallow semantic parsing schemes
include some elements of causal language.

…

CAUSATION

made



Causal language:
a clause or phrase in which
one event, state, action, or entity
is explicitly presented
as promoting or hindering
another

Causal language:
a clause or phrase in which
one event, state, action, or entity
is explicitly presented
as promoting or hindering
another



Connective: fixed constructional cue 
indicating a causal relationship

because

prevented
from

causes



Connective: fixed constructional cue 
indicating a causal relationship

because

prevented
from

causes



Cause: presented as producing effect
Effect: presented as outcome

John trapped the fox
it was threatening his chickens

John the fox
eating his chickens

Ice cream consumption drowning



Connectives can be
arbitrarily complex.

For to

opens the way for 



We distinguish three types of causation.

because of
CONSEQUENCE

because
MOTIVATION

in order to PURPOSE



F1 0.77

κ 0.70

Latest annotation scheme shows
very good inter-annotator agreement.



We have annotated a small corpus
with this scheme.

Total 121 4790 1803

BECAUSE = B E Cau S E



Actual corpus examples
can get quite complex.

For to
must allowed to 

Average causal sentence length:  30 words

If
prevents

because
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The computational task is challenging.
Long tail of causal connectives

Requires sense disambiguation of connectives
for to for to

Complex output structure

Combinatorial connective possibilities
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constructions are matched by
regular expressions over word lemmas.

because

regex because+

(ˆ | )([ \ S]+ )+?(because/IN)
([ \ S]+ )+?

(ˆ | )([ \ S]+ )+?(because/IN)
([ \ S]+ )+?



Arguments are labeled by a
conditional random field.

…

…

•
•
•
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Both approaches use
a soft vote of three classifiers
as a filter.

Example classifier features
:

•

•

•

•

•

•



Our benchmark is a
dependency path memorization heuristic.

27/ 4

0 / 8

 14 / 1

…
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Connective discovery:
Causeway outperforms the benchmark by ~20 points. 
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Performance improves even more
when Causeway is combined with the benchmark.
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51.7%

13.4%

50.8%

31.6%

54.9%

54.6%

The first stage gets high recall & low precision,
but the filters balance them out for a better F1.
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Transition-based tagging builds
a complex output structure
using a sequence of simple operations.
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DeepCx uses
long short-term memory (LSTM) networks
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