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What Google displays for “why” questions

why is california on fire

Those trees are dying, mainly because those trees
are stressed.” Those dying trees provide fuel on the
ground for fires. Flames rise near a home as a
wildfire burns in Ventura.

Why is California having so many disasters this year? - CNN
www.cnn.com/2017/12/07/us/california-fires-disasters/index.html

Los Angeles Fire: Why Southern California Is Burning This Time | WIRED

https://www.wired.com/story/losangeles-wildfire-science/ v

Fires don't burn like this in Northern California. That's one of the things that makes the
island on the land an island. Most wildfires in the Sierra Nevadas and northern boreal forests are slowel
smaller, and more easily put out, relative to the south




What Google displays for “why” questions
could be a lot more helpful.

Powerful Santa Ana winds and extremely dry conditions are fueling
MI wildfires in Southern California in what has been a devastating year
for such natural disasters in the state.

California has always had wildfires, but this year's unique
combination of rain, heat and wind set off a cascade of events.

"The hot summer baked moisture out of everything and set the

stage for the wind event to bring the devastating fires," Swain said.



What Google displays for “why” questions
could be a lot more helpful.

Powerful Santa Ana winds and extremely dry conditions are fueling
MI wildfires in Southern California in what has been a devastating year
for such natural disasters in the state.

California has always had wildfires, but this year's unique
combination of rain, heat and wind set off a cascade of events.

"The hot summer baked moisture out of everything and set the

stage for the wind event to bring the devastating fires," Swain said.



Such cause-and-effect questions & assertions
are far from rare.

33% of explicit relations between French verbs
(Conrath etal. 201 1)

2% of explicit discourse connectives
in Penn Discourse Treebank

(Prasad et al., 2008)



Such cause-and-effect questions & assertions
are far from rare.

33% of explicit relations between French verbs
(Conrath etal. 201 1)

2% of explicit discourse connectives
in Penn Discourse Treebank

(Prasad et al., 2008)

>5% and among the most complex

of questions asked to question-answering systems
(Verberne et al., 2010)
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This style of analysis
is known as “shallow semantic parsing.”

CAUSATION

|

Why s California on fire ?

\— EFFECT A

CAUSATION
(ENABLEMENT)

T

The hot summer set the stage for the devastating fires .

\— CAUSE J g EFFECT
. .
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-
-
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trigger/connective

“ argument spans -



Task definition: connective discovery +
argument identification

Connective discovery
Find lexical triggers
of causal relations

([ J
| worry because » » | worry because
| care. | | care.
®

Argument identification

|dentify cause & effect spans
for each connective
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The catch:

Causality is expressed
in an enormous variety of ways.

Such swelling can impede breathing.

They moved because of the schools.
Werre running late, so let's move quickly.
This opens the way for broader regulation.

Judy's comments were so offensive that | left.

After a drink, she felt much better:

The more | read his work, the less | like It.

(Verbs)
(Prepositions)
(Conjunctions)
(Multi-word exprs)

(Complex)

(Temporal)

(Correlation)
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handles only a portion of this space.
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Construction grammar (CxG)
offers a way forward.

(Fillmore et al., 1988; Goldberg, 1995)

Construction
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Construction grammar (CxG)
offers a way forward.

offensive

Linguistic form

et

Meaning EXTREME(OFFENSIVE) = _| LEFT

(Fillmore et al., 1988; Goldberg, 1995)

Construction

27



(It’s not just causality, either.)
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(It’s not just causality, either.)

Comparatives  Youre as bad as my mom!
More boys wanted to participate than girls.

Andrew Is as annoying as he is useless.
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(It’s not just causality, either.)

Comparatives

Concessives

Youre as bad as my mom!
More boys wanted to participate than girls.

Andrew Is as annoying as he is useless.

Ve headed out in spite of the awful weather.
VWe value any contribution, no matter Its size.
Strange as it seems,

there's been a run of crazy dreams!

30



Full CxG theory means
“constructions all the way down’”

so offensive that | left

(see Goldberg, 2006)
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“constructions all the way down’”

so offensive that | left

(so adj )

(see Goldberg, 2006)
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Full CxG theory means
“constructions all the way down’:

so offensive that | left

- adJ P hrase

adj phrase

predicate arg
or Nnoun
modifier

predicate arg

(see Goldberg, 2006)
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Full CxG theory means

“constructions all the way down’:

so offensive that | left

ad) phrase predicate arg
predicate arg

adj phrase

predicate arg
or noun
modifier

predicate arg

(see Goldberg, 2006)
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Full CxG theory means
“constructions all the way down’”

so offensive that | left

(so ad that clause)

ad) phrase
predicate arg
A
[ |
(adv ady —(so ad )y  (that clause) . COMPIe-
. T ment
, adj phrase predicate arg ,
adj phrase . predicate arg
, predicate arg
predicate arg
or noun
modifier

(see Goldberg, 2006)

B ) > —

| |
EXTREME(_ )
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Full CxG theory means
“constructions all the way down’”

so offensive that | left

(so _ad] that clause) [ECENVRENE EXTREME(__) =
adj phrase
predicate arg
A A
[ \ | |
: : C le-
(adv adj) -----(so adj )  (that clause) ----- :nn;Ete EXTREME(_)
, adj phrase predicate arg ,
adj phrase . predicate arg
, predicate arg
predicate arg
or noun
modifier

(see Goldberg, 2006)
37



The “constructions on top” approach
reaps the low-hanging fruit
from applying CxG to NLP.

Construction recognition
POS tagging, syntactic parsing

Tokenization
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The “constructions on top” approach
reaps the low-hanging fruit
from applying CxG to NLP.

Tagging causal relations
Construction recognition
POS tagging, syntactic parsing

Tokenization
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“Constructions on top”
borrows two key insights of CxG.

I. Words, multi-word expressions, and grammar
are all on equal footing

as “‘learned pairings of form and function.”

2. Constructions pair patterns of surface forms
directly with meanings.

(see Goldberg, 2013)
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Thesis statement:
Using the “constructions on top” approach
to applying CxG, we can:
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Thesis statement:
Using the “constructions on top” approach
to applying CxG, we can:

- Improve shallow semantic parsing coverage

using richer, more flexible linguistic representations.

» Design annotation guidelines & annotate a corpus
using these representations.

- Build automated machine learning taggers
for constructional realizations of semantic relations.

44



Today’s talk:

|. The BECAUSE annotation scheme & corpus
of causal language

2. Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

3. DeepCx:a neural, transition-based tagger
for causal constructions
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Today’s talk:

The BECAUSE annotation scheme & corpus
of causal language

Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

. DeepCx: a neural, transition-based tagger

for causal constructions
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Previous projects have struggled
to annotate real-world causality.

SemEval 2007

Task 4
(Girju et al, 2007)

CaTeRS

(Mostafazadeh et al,,
2016)

Richer Event
Descriptions

(O'Gorman et al., 2016;

Croft et al, 2016)

“A person infected with a <e1>flu</e1> <e2>virus</e2>
strain develops antibodies against it.”’

Cause-Effect(e2, el) = "true"

Eventy— CAUSE_OVERLAPS————

Kay lost 50 pounds and her clothes no longer fit.

rBEFORE-PRECONDITIONS;

VWe've allocated a budget to equip the barrier
with electronic detention equipment.

47



Existing shallow semantic parsing schemes
include some elements of causal language.

Penn Discourse

Treebank
(Prasad et al,, 2008)

PropBank
(Palmer et al.,, 2005)

FrameNet
(Fillmore & Baker, 2010;
Ruppenhofer et al,, 2016)

Roleset id: prevent.01 , stop, prevent, stopping in advance.

He made me bow
Lcauserd causation Lerreetd Lerreet

to show his dominance .

I— PURPOSE Q
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Causal language:

a clause or phrase in which

one event, state, action, or entity
is explicitly presented

as promoting or hindering

another

(Dunietz et al,, 2015, 2017)

49



Connective: fixed constructional cue
indicating a causal relationship

John trapped the fox because
it was threatening his chickens.

John prevented the fox
from eating his chickens
by building a fence.

lce cream consumption causes drowning.
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Connective: fixed constructional cue
indicating a causal relationship

John trapped the fox because
it was threatening his chickens.

John prevented the fox
from eating his chickens
by building a fence.

Not “truly”

lce cream consumption causes drowning, = causal

51



Cause: presented as producing effect
Effect: presented as outcome

John trapped the fox because
it was threatening his chickens.

John prevented the fox
from eating his chickens
by building a fence.

lce cream consumption causes drowning.

52



Connectives can be
arbitrarily complex.

For markets to work,
banks must not expect bailouts.

This opens the way for broader regulation.
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We distinguish three types of causation.

The system falled because of
# CONSEQUENCE
a loose screw.

Mary left because John was
. # MOTIVATION
coming.

Mary left in order to avoid John.  mmp  Pureos:

54



Latest annotation scheme shows
very good inter-annotator agreement.

Agreement
Connective spans (F) 0.77
Causation types (k) 0.70
Cause spans 0.89
(96 exact match | same connective)
Effect spans 0.86

(96 exact match | same connective)

2 trained annotators
260 sentences

98 Instances of causal language
55



We have annotated a small corpus
with this scheme.

Documents Sentences Causal

New York Times

VWashington section 59 1924 717
(Sandhaus, 2014)

Penn TreeBank WS 47 1542 534
2014 NLP Unshared
Task in Polilnformatics 3 772 324

(Smith et al, 2014)

Manually Annotated

Sub-Corpus 12 629 228
(Ide et al,, 2010)

Total 121 4790 1803

BECAUSE = Bank of Effects and Causes Stated Explicitly

56



Actual corpus examples
can get quite complex.

“For market discipline to effectively constrain risk,
financial institutions must be allowed to fail.”

Conséquence [Facill}
e
Argument Argument

Cons[Facil] Cons [Facil]
Argument I ___Argument Argument__ e __.Arg
For market discipline to effectively constrain risk, financial institutions  must be allowed to fail.

“If properly done, a market sensitive regulatory authority
not only prevents some of the problems, but is pro-market,
because we have investors now who are unwilling to invest even in things they should.”

Cons[Facil]? “TArgument
If properly done,

Argument

Argument Cons[Inhib] Argument Argument | |Cons[ Facil]| Argument,
a market sensitive regulatory authority not only prevents some of the problems, but is pro-market, because we have investors now who are unwilling to invest even in things they should

Average causal sentence length: 30 words 57
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The BECAUSE annotation scheme & corpus
of causal language

Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

DeepCx:a neural, transition-based tagger
for causal constructions
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The computational task is challenging.

Long tail of causal connectives

100% 150% 200% 250%

Requires sense disambiguation of connectives
e.g., 'necessary for us to succeed” vs. “hard for me to do”

Complex output structure

Combinatorial connective possibilities

60



|. Pattern-based

connective discovery

b
ecause from C
C
O O
SO...
that C
O

| nearly died from worry.

You could have called me
from your hotel.

(Dunietz et al,, 2017)
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|. Pattern-based
connective discovery

b
ecause from C
g Ny
SO...
that C
O

| nearly died from worry.

You could have called me
from your hotel.

(Dunietz et al,, 2017)

» 2. Argument
identification

from C{ worry
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|. Pattern-based » 2. Argument » 3. Statistical classifier
connective discovery identification to filter results
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|. Pattern-based » 2. Argument » 3. Statistical classifier
connective discovery identification to filter results

beCau
Se from C from worry from worry
oS O U U
% |...died |...died
that C
O
| from 4 %cc);cjgl from
| nearly died from worry. U
You could have called me ...called
from your hotel. me

¥

4. Remove duplicate
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|. Pattern-based » 2. Argument
connective discovery identification
(tentative) (tentative)
be
Cayge from C from 4 worry
g Wy U
l...died
so...
that C
O your
from 4 hotel
| nearly died from worry. O |
You could have called me ...called
from your hotel. me

(Dunietz et al,, 2017)

3. Statistical classifier
to filter results

from 4 worry

@)
|...died

from

¥

4. Remove duplicate

connectives
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|. Pattern-based » 2. Argument » 3. Statistical classifier
connective discovery identification to filter results

(tentative) (tentative)
be
Cayge from C from 4 worry from 4 worry
g Wy | *
|...died |...died
So..,
that C
O
| from 4 %cc);cjgl from
| nearly died from worry. U
You could have called me ...called
from your hotel. me

' . 2
Causeway-S: Syntactic patterns + head expansion rules
Causeway-L: Lexical patterns + CRF sequence labeler 4. Remove duplicate

(Dunietz et al., 2017) connectives 9y



2. Causeway-S/Causeway-L:
two pattern-based taggers
for causal constructions

i. Causeway-S: Syntax-based pipeline

i. Causeway-L: Lexical pattern-based pipeline
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Syntax-based connective discovery:
each construction is treated as

a partially-fixed parse tree fragment.

| worry because | care.

69



Syntax-based connective discovery:
each construction is treated as
a partially-fixed parse tree fragment.

“head” of
because | care

| worry because | care.
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Syntax-based connective discovery:
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Syntax-based connective discovery:
each construction is treated as
a partially-fixed parse tree fragment.
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Syntax-based connective discovery:
TRegex patterns are extracted in training,
and matched at test time.

[ ] (/~because_[0-9]+%/
advcl <2 /~NIN.*¥/ <1 mark
Training: | worry because » » > (/.*_[0-9]+/
| care. [ } <1 advcl
mark > (/.*_[0-9]+/)))

because/IN

/3



Syntax-based connective discovery:
TRegex patterns are extracted in training,
and matched at test time.

[ ] (/~because_[0-9]+%/
advcl <2 /~NIN.*¥/ <1 mark
Training: | worry because » » > (/_*_[0_9]+/
| care. [ } <1 advcl
mark > (/.*_[0-9]+/)))
because/IN

| worry because | love you.

+ | worry because
. I
Test (/~because_[0-9]+$/ | love youl.
<2 /MINL*/ <1 mark

> (/. *_[0-9]+/
<1 advcl

> (/.*_[0-9]+/))) " Levy and Andrew, 2006 74



Syntax-based argument |D:
Argument heads are expanded
to include most dependents.
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Syntax-based argument |D:
Argument heads are expanded
to include most dependents.
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Causeway-S/Causeway-L: two simple systems
for tagging causal constructions

Causeway-S: Syntax-based pipeline

Causeway-L: Lexical pattern-based pipeline
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Causeway-S/Causeway-L: two simple systems
for tagging causal constructions

Causeway-S: Syntax-based pipeline

Causeway-L: Lexical pattern-based pipeline
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Lexical pattern-based connective discovery:
constructions are matched by
regular expressions over word lemmas.

Training: | vvorrly because » E[“ \I %gg_\)i]?+ )+?(because/IN)
care. :

| worry because | love you.

Test: + regex | worry because
| love you.

(" | ([ \ S]+ )+?(because/IN)
([\S]+)+?

79



Lexical pattern-based argument ID:
Arguments are labeled by a
conditional random field.

CAUSE EFFECT EFFECT

labels

featurized
words

T K
1
p(ylx) = Z—H {z Orfr Ve, Yt—l»xt)}
t=1

Features include information about:
* Word
 Connective
* Relationship between word & connective

80



Both approaches use
a soft vote of three classifiers
as a filter.

Classifier | Classifiers 2 & 3

Global: f Connective X: f ||

Connective Y: f ||
Connective Z: / ||
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Both approaches use
a soft vote of three classifiers
as a filter.

Classifier | Classifiers 2 & 3

Global: f Connective X: f I
% Connective Y: Ja
% Connective Z: / I

Logistic regression:
1
1+ exp{—6, + 07x}

p(y = truelx) =
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Both approaches use
a soft vote of three classifiers
as a filter.

Classifier | Classifiers 2 & 3

Global: f Connective X: f I
- Connective Y: f ||
% Connective Z: / I

Logistic regression: Bayesian majority-class:

#{pattern is causal}

p(y = truelx) = p(y = true|x) =

1+ exp{—0, + 07x} #{pattern appears in corpus}
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Both approaches use
a soft vote of three classifiers
as a filter.

Classifier |~ Classifiers 2 &3 52‘3225?@ classifier features 0
Global: f Connective X: f || . POS tags of cand e
Connective Y: f I +  Number of words

between cand e

Connective Z / II Domination relationship

between cand e
Matching connective pattern

Pair of tense/aspect/modality
modifier sets of cand e

WordNet hypernyms

84



Our benchmark is a
dependency path memorization heuristic.

Parse paths to possible

Connective cause/effect heads Causal / Not causal
prevent from  nsubj, advcl 27/ 4
prevent from  nsubj, advmod 0/8
because of case, case = nmod 14/ 1

85



Connective discovery

Causeway-S (unfiltered)

6.3%

| 1.5%

Causeway-S (filtered)

Causeway-L (unfiltered)

Causeway-L (filtered)

Benchmark

72.3%

W Precision
H Recall
HF|
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Connective discovery:

Causeway outperforms the benchmark by ~20 points.

6.3% M Precision

72.3% H Recall
1 1.5% mE

Causeway-S (unfittered)

Causeway-S (filtered)

7.2%
Causeway-L (unfiltered) 92.7%

1 3.4%
Causeway-L (filtered)

84.1%
Benchmark 19.7%

31.6%
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Performance improves even more
when Causeway is combined with the benchmark.

%A M Precision

72.3% H Recall
| 1.5% mE

Causeway-S (unfittered)

Causeway-S (filtered)

7.2%

Causeway-L (unfiltered) 92.7%

1 3.4%

Causeway-L (filtered)

Benchmark

Benchmark + CW-S

Benchmark + CW-L
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The first stage gets high recall & low precision

W Precision
H Recall
HF|

Causeway-S (unfiltered)

Causeway-S (filttered)

Causeway-L (unfiltered)

Causeway-L (filtered)

Benchmark

Benchmark + CW-S

Benchmark + CW-L
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The first stage gets high recall & low precision,
but the filters balance them out for a better F,.

M Precision
Causeway-S (unfiltered) W Recall

mF|
Causeway-S (filtered)
Causeway-L (unfiltered)

Causeway-L (filtered)

Benchmark

Benchmark + CW-S

Benchmark + CW-L
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Argument identification is passable given connective discovery,
though effects are harder than causes.
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Argument identification is passable given connective discovery,
though effects are harder than causes.

m Cause (exact)
m Cause (50%)
W Effect (exact)
m Effect (50%)

Causeway-S (filtered)

Causeway-L (filtered)

Benchmark

Benchmark + CW-S

Benchmark + CW-L
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Today’s talk:

|. The BECAUSE annotation scheme & corpus
of causal language

2. Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

3. DeepCx:a neural, transition-based tagger
for causal constructions

93
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|. The BECAUSE annotation scheme & corpus
of causal language

2. Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

3. DeepCx:a neural, transition-based tagger
for causal constructions
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Transition-based tagging builds
a complex output structure

using a sequence of simple operations.
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The DeepCx transition scheme
(Heavily modified from Choi and Palmer, 201 1)
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(Possible) connective anchor
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The DeepCx transition scheme
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The DeepCx transition scheme
(Heavily modified from Choi and Palmer, 201 1)

CONN

Tagger state
Well , they moved because of the schools

(Possible) connective anchor
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The DeepCx transition scheme
(Heavily modified from Choi and Palmer, 201 1)
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(Possible) connective anchor
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The DeepCx transition scheme
(Heavily modified from Choi and Palmer, 201 1)

NoO-

CONN

Tagger state Partially-constructed instance
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DeepCx also significantly outperforms Causeway
on argument identification.
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Today’s talk:

|. The BECAUSE annotation scheme & corpus
of causal language

2. Causeway-L/Causeway-S:
two pattern-based taggers
for causal constructions

3. DeepCx:a neural, transition-based tagger
for causal constructions
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The “constructions on top” approach
to operationalizing CxG

A COT-based approach

to comprehensively annotating
causal language

Pattern-based methods & architecture
for tagging causal constructions

Transition scheme & DNN architecture
for tagging complex constructions
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